True-amplitude CRS-based Kirchhoff time migration for AVO analysis

Miriam Spinner and Jürgen Mann

Wave Inversion Technology (WIT) Consortium Geophysical Institute, University of Karlsruhe (TH)

September 14, 2005

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Overview

Motivation

Principle Effect of migration aperture on amplitudes

Common-Reflection-Surface stack

Adapted workflow

Extraction of CRS attributes Velocity model determination Determination of migration attributes

Synthetic data example

- Conclusions
- Acknowledgments

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Kirchhoff migration

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Kirchhoff migration

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Kirchhoff migration: stationary point

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation

Principle Aperture & amplitudes

CRS stacl

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Kirchhoff migration: conventional aperture

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle

Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

・ロ・ ・ 白 ・ うへで

Optimum aperture = minimum aperture

- centered around stationary point
- size: projected Fresnel zone

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation

Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model

Migration attributes

Data example

Conclusions

Acknowledgments

Optimum aperture = minimum aperture

- centered around stationary point
- size: projected Fresnel zone

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation

Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Optimum aperture = minimum aperture

- centered around stationary point
- size: projected Fresnel zone

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation

Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Problems with user-given apertures:

too small underestimated amplitudes and/or loss of steep events

- too large undesired noise and/or other events contribute to stack
- true-amplitude migration requires sufficiently large apertures

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

(日) (日) (日)

Problems with user-given apertures:

too small underestimated amplitudes and/or loss of steep events

- too large undesired noise and/or other events contribute to stack
- true-amplitude migration requires sufficiently large apertures
 - sticle of operator aliasing
 - anti-alias filters tend to falsify amplitudes

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stac

Workflow

Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Problems with user-given apertures:

too small underestimated amplitudes and/or loss of steep events

too large undesired noise and/or other events contribute to stack

 true-amplitude migration requires sufficiently large apertures

risk of operator aliasing

anti-alias filters tend to falsify amplitudes

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ めへで

Problems with user-given apertures:

too small underestimated amplitudes and/or loss of steep events

too large undesired noise and/or other events contribute to stack

 true-amplitude migration requires sufficiently large apertures

risk of operator aliasing

anti-alias filters tend to falsify amplitudes

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Problems with user-given apertures:

too small underestimated amplitudes and/or loss of steep events

too large undesired noise and/or other events contribute to stack

- true-amplitude migration requires sufficiently large apertures
 - risk of operator aliasing

anti-alias filters tend to falsify amplitudes

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Problems with user-given apertures:

too small underestimated amplitudes and/or loss of steep events

too large undesired noise and/or other events contribute to stack

- true-amplitude migration requires sufficiently large apertures
 - risk of operator aliasing
 - anti-alias filters tend to falsify amplitudes

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used enhanced signal/heingis becination
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - set of stacking parameters (CRS attributes)

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - set of stacking parameters (CRS attributes

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application

output:

- zero-offset section/volume
- set of stacking parameters (CRS attributes)

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application

output:

- zero-offset section/volume
- set of stacking parameters (CRS attributes

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow

Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application

output:

- zero-offset section/volume
- set of stacking parameters (CRS attributes)

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction

Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - set of stacking parameters (CRS attributes)

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow

Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - set of stacking parameters (CRS attributes)
 - emergence angle a: curvature of normal-incidence-point (NIP) wavee curvature of normal (N) wave
 - coherence section

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow

Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - set of stacking parameters (CRS attributes)
 - emergence angle α
 - curvature of normal-incidence-point (NIP) wave
 - curvature of normal (N) wave
 - coherence section

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow

Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - ➡ set of stacking parameters (CRS attributes)
 - emergence angle α
 - curvature of normal-incidence-point (NIP) wave
 - curvature of normal (N) wave

coherence section

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow

Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - ➡ set of stacking parameters (CRS attributes)
 - emergence angle α
 - curvature of normal-incidence-point (NIP) wave
 - curvature of normal (N) wave

coherence section

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow

Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - ➡ set of stacking parameters (CRS attributes)
 - emergence angle α
 - curvature of normal-incidence-point (NIP) wave
 - curvature of normal (N) wave

coherence section

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow

Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - set of stacking parameters (CRS attributes)
 - emergence angle α
 - curvature of normal-incidence-point (NIP) wave
 - curvature of normal (N) wave

coherence section

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow

Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section/volume
 - set of stacking parameters (CRS attributes)
 - emergence angle α
 - curvature of normal-incidence-point (NIP) wave
 - curvature of normal (N) wave

coherence section

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow

Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

General workflow

□ ▶ ▲母 ▶ 少へへ

9th SBGf Conference.

Salvador 2005

□ ▶ < □ ▶ < ○ < ○</p>

9th SBGf Conference, Salvador 2005

Spinner & Mann

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations
- attribute-based event-consistent smoothing
 smooth input for determination of PFZ and stationary point
- attribute-based event-consistent picking
 input for velocity model determination

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

▲□▶ ▲母▼ めへで

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations
- attribute-based event-consistent smoothing
 smooth input for determination of PFZ and stationary point
- attribute-based event-consistent picking
 input for velocity model determination

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

▲□▼ ▲□▼ ろくで

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations
- attribute-based event-consistent smoothing
 smooth input for determination of PFZ and stationary point
- attribute-based event-consistent picking
 input for velocity model determination

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

▲□▼ ▲□▼ ろくで

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations
- attribute-based event-consistent smoothing
 smooth input for determination of PFZ and stationary point
- attribute-based event-consistent picking
 input for velocity model determination

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations
- attribute-based event-consistent smoothing

smooth input for determination of PFZ and stationary point

attribute-based event-consistent picking
 input for velocity model determination

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Workflow: extraction of attributes

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations
- attribute-based event-consistent smoothing
 smooth input for determination of PFZ and stationary point
- attribute-based event-consistent picking
 input for velocity model determination

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Workflow: extraction of attributes

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations
- attribute-based event-consistent smoothing
 - smooth input for determination of PFZ and stationary point
- attribute-based event-consistent picking
 - input for velocity model determination

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Workflow: extraction of attributes

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations
- attribute-based event-consistent smoothing
 - smooth input for determination of PFZ and stationary point
- attribute-based event-consistent picking
 - input for velocity model determination

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

▲□▶ ▲酉 ▼ 少へで

9th SBGf Conference.

Salvador 2005

- CRS attributes provide approximation of *diffraction* response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex
- interpolation of velocity model

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ ろ∢で

- CRS attributes provide approximation of *diffraction* response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex

interpolation of velocity model

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ ろ∢で

- CRS attributes provide approximation of diffraction response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex

interpolation of velocity model

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ ろ∢で

- CRS attributes provide approximation of diffraction response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex

interpolation of velocity model

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

▲□▼ ▲□▼ ろ∢で

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ ろへで

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

▲□▶ ▲母▼ ろく⊙

- CRS attributes provide approximation of diffraction response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex
- interpolation of velocity model
 - weighted polynomial interpolation
 - currently no physical constraints

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

- CRS attributes provide approximation of diffraction response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex
- interpolation of velocity model
 - weighted polynomial interpolation
 - currently no physical constraints

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

- CRS attributes provide approximation of diffraction response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex
- interpolation of velocity model
 - weighted polynomial interpolation
 - currently no physical constraints

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

◆□ ▶ ▲□ ▶ ろへで

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

4 日 × 4 日 × 9 へ 0

Workflow: migration attributes

(ロ) (日) (日)

9th SBGf Conference.

Salvador 2005

Stationary point for ZO:

- migration operator τ_D is tangent to event τ_R
- dip of reflection event related to emergence angle o

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

(日) (日) (日)

Stationary point for ZO:

- migration operator τ_D is tangent to event τ_R
- dip of reflection event related to emergence angle a

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

・日マ ・日マ うくつ

Stationary point for ZO:

- migration operator τ_D is tangent to event τ_R
- dip of reflection event related to emergence angle α

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Stationary point for ZO:

- migration operator τ_D is tangent to event τ_R
- dip of reflection event related to emergence angle α
- dip of migration operator can be calculated analytically
- minimum dip difference below given threshold determines stationary point

Projected Fresnel zone for ZO:

directly available from CRS attributes

$$\frac{W_F}{2} = |x_m - x_0| = \frac{1}{\cos \alpha} \sqrt{\frac{v_0 T}{2 \left| \frac{1}{R_N} - \frac{1}{R_{NP}} \right|}}$$

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Stationary point for ZO:

- migration operator τ_D is tangent to event τ_R
- dip of reflection event related to emergence angle α
- dip of migration operator can be calculated analytically
- minimum dip difference below given threshold determines stationary point

Projected Fresnel zone for ZO:

directly available from CRS attributes

$$\frac{W_F}{2} = |x_m - x_0| = \frac{1}{\cos \alpha} \sqrt{\frac{v_0 T}{2 \left| \frac{1}{R_N} - \frac{1}{R_{NIP}} \right|}}$$

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Stationary point for ZO:

- migration operator τ_D is tangent to event τ_R
- dip of reflection event related to emergence angle α
- dip of migration operator can be calculated analytically
- minimum dip difference below given threshold determines stationary point

Projected Fresnel zone for ZO:

directly available from CRS attributes

$$\frac{W_F}{2} = |x_m - x_0| = \frac{1}{\cos \alpha} \sqrt{\frac{v_0 T}{2 \left| \frac{1}{R_N} - \frac{1}{R_{NIP}} \right|}}$$

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Stationary point for ZO:

- migration operator τ_D is tangent to event τ_R
- dip of reflection event related to emergence angle α
- dip of migration operator can be calculated analytically
- minimum dip difference below given threshold determines stationary point

Projected Fresnel zone for ZO:

directly available from CRS attributes

$$\frac{W_F}{2} = |x_m - x_0| = \frac{1}{\cos\alpha} \sqrt{\frac{v_0 T}{2\left|\frac{1}{R_N} - \frac{1}{R_{NIP}}\right|}}$$

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Common-Reflection-Point trajectory

extrapolation of stationary point to finite offset

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

< □ > < □ > < □ > < ○</p>

Widening of PFZ size with offset

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ 少へで

Original model (*V*_{*P*}**)**

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow

Attribute extraction Velocity model Migration attributes

Data example

Conclusions Acknowledgments Related talks

< □ > < □ > < □ > < ○<</p>

Zero-offset seismogram

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow

Attribute extraction Velocity model Migration attributes

Data example

conclusions toknowledgments telated talks

▲□▼ ▲□▼ ろく(?)

Migration velocity model

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow

Attribute extraction Velocity model Migration attributes

Data example

Conclusions Acknowledgments Related talks

Image gather

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stac

Workflow

Attribute extraction Velocity model Migration attributes

Data example

Conclusions Acknowledgments Related talks

▲□▶ ▲母▼ ろ∢⊙

PreSTM stacked section (conventional)

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow

Attribute extraction Velocity model Migration attributes

Data example

conclusions cknowledgments telated talks

▲□ ▶ ▲□ ▶ ろくで

PreSTM stacked section (CRS-based)

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow

Attribute extraction Velocity model Migration attributes

Data example

conclusions toknowledgments telated talks

・ロマ ・日マ シタの

CRS-based stationary points

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow

Attribute extraction Velocity model Migration attributes

Data example

Conclusions Acknowledgments Related talks

◆□ ▶ ▲□ ▶ 少々⊙

CRS-based ZO projected Fresnel zone

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow

Attribute extraction Velocity model Migration attributes

Data example

Conclusions Acknowledgments Related talks

< □ > < □ > < □ > < ○<</p>

AVO (first target reflector)

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow

Attribute extraction Velocity model Migration attributes

Data example

conclusions acknowledgments telated talks

・ロト ・日 ・ うへで

AVO (second target reflector)

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow

Attribute extraction Velocity model Migration attributes

Data example

conclusions Acknowledgments

AVO (third target reflector)

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow

Attribute extraction Velocity model Migration attributes

Data example

conclusions

Related talks

◆□ ▶ ▲□ ▶ ろへで

ZO amplitudes (first target reflector)

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow

Attribute extraction Velocity model Migration attributes

Data example

Conclusions Acknowledgments Related talks

▲□▶ ▲□▶ ろへ⊙

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - ➡ clearer images

🛏 more reliable amplitudes

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

・日マ ・日マ うくの

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - ➡ clearer images
 - reduction of migration artifacts no operator aliasing
 - more reliable amplitudes

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

▲□ ▶ ▲□ ▶ ろへで

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - ➡ clearer images
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stacl

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - ➡ clearer images
 - reduction of migration artifacts
 - no operator aliasing

more reliable amplitudes

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - ➡ clearer images
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes
 - less summing of unwanted contributions from other events

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - ➡ clearer images
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes
 - less summing of unwanted contributions from other events
 - less summing of noise.

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - ➡ clearer images
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes
 - less summing of unwanted contributions from other events
 - less summing of noise

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - ➡ clearer images
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes
 - less summing of unwanted contributions from other events
 - less summing of noise

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - ➡ clearer images
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes
 - less summing of unwanted contributions from other events
 - less summing of noise

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Acknowledgments

This work was kindly supported by the sponsors of the Wave Inversion Technology (WIT) Consortium, Karlsruhe, Germany 9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

・ロマ ・日マ うくで

Related presentations

Workshop WS-2 "Velocity analysis for depth imaging", Monday afternoon:

13:30 Common-Reflection-Surface stack – a generalized stacking velocity analysis tool

Session "Seismic Imaging", Wednesday morning:

- 09:20 Smoothing and automated picking of kinematic wavefield attributes
- 09:45 CRS-stack-based seismic imaging for land data and complex near-surface conditions
- 11:25 Common-Reflection-Surface stack for OBS and VSP geometries and multi-component seismic reflection data

9th SBGf Conference, Salvador 2005 Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

9th SBGf Conference, Salvador 2005

Spinner & Mann

Motivation Principle Aperture & amplitudes

CRS stac

Workflov

Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Acknowledgments

Related talks

-□▶ →酉▶ 少へで